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Amid the ongoing COVID-19 pandemic, public health authorities and the general population are striving to achieve

a balance between safety and normalcy. The uncertainty and novelty of the current conditions call for the develop-

ment of theory and simulation tools that could offer a fine resolution of multiple strata of society while supporting

the evaluation of “what-if” scenarios. Particularly important is to assess the effectiveness of different testing ap-

proaches and potential vaccination strategies for the future ahead of us. Here, an agent-based modeling platform is

proposed to simulate the spreading of COVID-19 in small towns and cities. The platform is developed at the resolu-

tion of a single individual, and demonstrated on real data from New Rochelle, NY —one of the first outbreaks reg-

istered in the United States. Supported by expert knowledge and informed by officially reported COVID-19 data,

the model incorporates detailed elements of the spreading within a statistically realistic population. Along with

pertinent functionality such as testing, treatment, and vaccination options, the model also accounts for the burden

of other illnesses with symptoms similar to COVID-19. Members of the community undergo testing and treatments,

including hospitalization. Unique to the model is the possibility to explore different testing approaches —in hospi-

tals or drive-through facilities— and vaccination strategies that could prioritize vulnerable groups. Decision making

by public authorities could benefit from the model, for its fine-grain resolution, open-source nature, and wide range

of features.

1 Introduction

In December 2019, COVID-19 was first observed in humans in Wuhan, the Hubei Province’s

capital in China. The World Health Organization (WHO) declared this outbreak as a Pub-

lic Health Emergency of International Concern on January 30, 2020, and later named it a

pandemic on March 11th, 2020. As of November 3rd, 2020, the WHO has reported 46,591,622

cases globally, with 1,201,200 deaths.[1] In the US, the number of infected individuals keeps

rising, with tens of thousands of newly infected cases discovered every day. The Centers for

Disease Control and Prevention (CDC) has reported 9,182,628 cases as of November 3rd,

2020.[2] Following an unprecedented containment campaign of lockdowns, most countries

seek a delicate balance between safety and normalcy, aiming for a safe return to normal ac-

tivities amidst less restrictive conditions.

Timely case detection through efficient testing and contact tracing is among the key com-

ponents required for lowering the COVID-19 spread before a vaccine becomes available.[3, 4, 5, 6]

Important questions on testing pertain to the identification of infected individuals and their

contacts. Addressing these questions calls for an improved understanding of community

structure, outbreak locations, and individual lifestyles.[7, 8] Due to the scale of the COVID-
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19 epidemic, an additional burden has been placed on traditional testing sites, such as hos-

pitals, emergency rooms, and walk-in clinics, thereby challenging their safety.[9, 10, 11]

Computational models are powerful tools for understanding novel epidemics and evaluating

the effectiveness of potential countermeasures.[12, 13, 14, 15, 16] Agent-based models (ABMs)

are a class of computational models that provide a high-resolution—both temporal and

spatial—representation of the epidemic at the individual level.[4, 17, 18, 19, 20, 21] These mod-

els afford consideration of multiple physical locations, such as businesses or schools, as well

as unique features of communities, like human behavioral trends or local mobility patterns.

Once validated, ABMs can be used to test competing “what-if” scenarios that would other-

wise require impractical and, potentially, unethical experiments. For example, Ferguson et

al. developed an ABM to investigate the impact of non-pharmaceutical interventions for

COVID-19, such as nation-wide confinement in the UK and the US.[22] Aleta et al. pro-

posed an ABM for the entire Boston metropolitan area to elucidate the role of different

types of measures in contact tracing in maintaining low levels of infection.[4] Gressman and

Peck created an ABM of a university campus to examine strategies for the safe reopening

of higher education institutions.[23] Hinch et al. formulated an open-source ABM agent-

based modeling framework to support the analysis of select non-pharmaceutical interven-

tions and contact tracing schemes.[24] The merits of ABMs have been recognized by a large

number of studies, which have shed light on technical aspects of their implementation as

well as their scalability across scenarios.[25, 26, 27, 28, 29]

The focus of existing ABMs is either small micro-environments or entire countries and large

metropolitan areas, where the population is purposefully coarsened to enable numerical

simulation. Medium-size and highly resolved communities constitute an important, yet

unconsidered, modeling scale for COVID-19. America is a “nation of small towns,” as de-

scribed by the US Census,[30], and after the initial wave of spreading in the New York metropoli-

tan area, we see medium-size towns are increasingly hit by the pandemic. A high-resolution

ABM can closely capture real-world communities and interaction patterns at this interme-

diate scale, thereby allowing them to carefully reflect town-specific lifestyles without requir-

ing coarsening to perform massive simulation campaigns. Thus, the synthetic generation of

a one-to-one virtual population with its own individual buildings (residential and public)

opens a wide range of new possibilities in epidemiological analysis that may inform public
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health authorities to design accurate and targeted interventions. The analysis could include

lockdowns of different parts of the town and afford to quantify the effect of testing prac-

tices, treatment prevalence, and vaccination strategies.

Toward the study of these medium-size populations, we develop an ABMagent-based mod-

eling platform of COVID-19 for the entire town of New Rochelle, located in Westchester

County in New York, US. This location was chosen as it was one of the earliest COVID-

19 outbreaks in the US and is representative of a typical town. The ABM replicates, geo-

graphically and demographically, the town structure obtained from the US Census statistics.[31]

The model is based on the earlier ABM developed by Ferguson’s research group to study

pandemic influenza,[19, 20, 21] which has been recently adapted to study COVID-19.[22] The

proposed ABM expands the original model by Ferguson et al.[19, 20, 21] along several direc-

tions. First, we incorporate two testing strategies: traditional, in-hospital testing with a

non-negligible risk of infection, and a “safe” drive-through testing.[32, 33, 34, 35] Second, we

account for temporal variations in time-dependent testing capacity to reflect the change

in resource allocation during the course of the pandemic. Third, our model explicitly in-

cludes multiple COVID-19 treatment types, such as home isolation, hospitalization, and

hospitalization in intensive care units (ICUs). Fourth, we separately track individuals with

COVID-19-like symptoms due to other diseases like seasonal influenza or the common cold.

These individuals are expected to play an important role in the epidemic by imposing an

additional burden on testing resources and contributing to false positives. Fifth, we indi-

vidually model employees in schools, hospitals, and retirement homes, enabling a dedicated

consideration of these professions. Finally, the model permits the selective study of impor-

tant interventions, such as business and school closures and their reopening and vaccina-

tion strategies. After validation against real data, we explore alternative “what-if” vacci-

nation scenarios, which may be relevant in the next several months. We consider a foresee-

able situation in which a limited number of vaccines will be available. In addition to ran-

dom vaccination, we explore the possibility of prioritizing vaccination for hospital employ-

ees, representing a high-risk population group with a critical role in the fight against COVID-

19 for groups of individuals whose status or profession makes them particularly vulnerable

to COVID-19 infection: healthcare, school, and retirement home workers, as well as resi-

dents. In addition to Along with selective vaccination of hospital employees, we assess the
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potential benefit of schools and businesses’ concurrent closures.

2 The database of New Rochelle, NY

2.1 New Rochelle database

We collected and organized a database of geographical coordinates, type, capacity, residen-

tial buildings, and public spaces in the town of New Rochelle, NY, USA. The database was

created by manually collecting geographical coordinates and characteristics of each resi-

dential and public building in the town using OpenStreetMap[36] and Google Maps.[37] The

database and the code for creating the town and its population are available through our

repository (https://github.com/Dynamical-Systems-Laboratory/NR-ABM-population).

The population data were collected in March and April 2020 from US Census using 2018 5-

year average tables for New Rochelle.[31] Since then, some of the data changed slightly, and

the reader is referred to our repository for the exact datasets. Data regarding the number

of students and employees in local schools was obtained from the National Center of Ed-

ucation Statistics,[38] while the hospital staff and patient number estimates were based on

the records from the New York State Department of Health[39] and the American Hospital

Directory.[40] Figure 1 shows the locations considered in the model.

2.2 Household, schools, and workplace assignment of agents

Households were assigned to agents using Census data on household and family structure,

vacancy rate, and the number of sub-units and floors in multi-unit buildings. Figure 2a)

shows the population distribution of the model set at the start of the simulation (see Sec-

tion S3 of the Supporting Information), which mirrors the increased density registered to-

ward the southern part of the town.[41] As demonstrated in Figure 2b), the distribution of

household sizes and the mean size is in good agreement with Census data. As evidenced in

Figures 2c) and 2d), we closely match the distribution of employed family members and

the overall age distribution, accurately resolving several age groups. As reported in Ta-

ble 1, we are successful in maintaining similar percentages of households with agents who

are above 60 years old. This aspect is particularly important for realistic predictions of

COVID-19, which is significantly more severe and fatal among the older population. Aside
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2.2 Household, schools, and workplace assignment of agents

Figure 1: Map of New Rochelle, NY, which highlights the residential and public buildings included in the

database.

from age, the modeled community preserves the ratio of families with children and of single-

parent households, as shown in Table 1.

All children aged 5-17 were assigned to schools of appropriate levels. The number of stu-

dents in a school was proportional to school size based on the data from the National Cen-

ter for Education Statistics.[38] Accordingly, the initial distribution of students in the model,

representing time before the pandemic, was set so that a portion of children younger than

five years old was placed in daycares, and similarly, 35% of individuals between 18–21 years

old attended the town’s higher education institutions.

A portion of agents older than 16 were allowed to work and study according to a set of

rules based on the estimated workplace and school sizes (see Section S3 of the Supporting

Information). Agents’ workplace distribution was generated using the US Census data on

the percentage of the population working in a given industry while the number of employ-

ees at hospitals, schools, and retirement homes was estimated. The initial numbers of re-

tirement homes residents were estimated based on institution size. The initial number of

hospital patients with a condition other than COVID-19 was set to occupy one-sixth of the
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2.2 Household, schools, and workplace assignment of agents

Figure 2: Select characteristics of the created (virtual) households: a) sizes of residential buildings across

town; b) percentage of households of a given size (Census data in brackets); c) distribution of employed

members per family (Census data in brackets); and d) age distribution of the population.

Table 1: Modeled properties of the population and US Census data for New Rochelle, NY.

Category Model US Census value

Mean household size 2.77 2.71

Households with one or

more individuals 60 years and older 47.0% 42.3%

Families with children 39.1% 34.2%

Single parent families 18.7% 25.0%
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2.3 COVID-19 data sources

total available beds. The exact steps for creating the population from building information

and census data are outlined in Section S3 of the Supporting Information.

2.3 COVID-19 data sources

The number of total and active New Rochelle cases were collected manually from official

reports and videos available for Westchester County.[42] The mortality and testing statis-

tics were obtained from the Official Twitter account of the Westchester County,[42] and the

New York State Department of Health,[43] respectively, for Westchester County as a whole,

and were then scaled to the population of New Rochelle. All the data is available through

our repository (https://github.com/Dynamical-Systems-Laboratory/NR-ABM-populat

ion).

3 COVID-19 ABM with testing and treatment

3.1 Model overview

During a day, agents transition between different locations (identified in the New Rochelle

database: households, workplaces, schools, retirement homes, and hospitals). In each of

these locations, they can interact with other agents, thereby supporting the transmission

of COVID-19. Agents can be healthy, undergoing testing, or be under treatment. We as-

sume that the town is isolated, such that the agents cannot leave the town, and new agents

cannot enter during the simulation.

Motivated by [19, 20, 22], the COVID-19 progression model consists of five states: sus-

ceptible (S), exposed—which includes infectious individuals who have not yet developed

symptoms which accounts for infected individuals who do not have developed symptoms–

(E), infectious-symptomatic (Sy), removed-healed (R), and removed-dead (D); with a de-

tailed outline of states, their variants, and transitions as shown in Figure 3. Upon infec-

tion, susceptible agents become exposed (E) and remain so for a latency period. Following

the COVID-19 infectiousness profile, we assume that exposed agents are not infectious dur-

ing the initial part of the latency period. When the latency period is over, exposed agents

develop symptoms and become infectious-symptomatic (Sy).[4] Some exposed agents may

recover without ever developing symptoms (that is, they are asymptomatic); in this case,
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3.1 Model overview

Figure 3: Schematic representation of modeled agent states and their possible transitions. Agent in the

model can be in one of the following states: susceptible (S); exposed (E); symptomatic (Sy); removed -

dead (D); removed - healthy/recovered (R); Agents in different states can undergo testing in a test car

(TC), or a hospital (THs) after which they can be treated through home isolation (IHm), normal hospital-

ization (HN ), or hospitalization in an intensive care unit, ICU (HICU ). In addition to symptomatic agents,

exposed agents and agents who have COVID-19-like symptoms but are not infected can also be tested.

Except for the symptomatic agents, all positive test results, including false positives, will lead to home

isolation.

their latency period is extended to match the expected COVID-19 recovery period.

Both exposed and symptomatic agents can undergo testing,Exposed agents and agents

showing symptoms—whether from COVID-19 or another condition—have the possibility

of being tested which can be performed either in a hospital (THs) or a car (TC). Testing

in a hospital carries the possibility of infecting hospital staff and patients with a condition

other than COVID-19. Additionally, if the agent is COVID-19-negative, then the agent is

at risk of becoming infected during testing. We assume that drive-through testing does not

carry the risk of infection based on the work of Upham.[34] The outcomes of a test can be

true positive or negative or false positive or negative.

After testing, agents are assigned treatment from one of the following three treatment types:

home isolation (IHm), routine hospitalization (HN), and hospitalization in an ICU (HICU).

An exposed agent who has tested positive for COVID-19 will always undergo home isola-

tion until developing symptoms, at which point their treatment can potentially change to

9

Brandon Behring


Brandon Behring




3.2 COVID-19 transmission dynamics

HN or HICU . In contrast, a symptomatic agent can be assigned to one of the three treat-

ments. A symptomatic agent can transition between different treatment types during the

course of the disease. All infected agents are removed through either recovery (R) or death

(D). A removed agent no longer contributes to the spread of the infection.

A symptomatic agent who is untested will not undergo treatment, and their removal is de-

termined following similar rules to the tested agents. However, an untested agent requiring

ICU treatment has an increased probability of dying, to account for the higher mortality in

the absence of a diagnosis. While the agents undergoing testing are routinely quarantined,

those who are not deemed to be tested retain their normal activities. However, when devel-

oping symptoms, these agents will refrain from going to work or school, thereby reducing

the contribution to contagion in public areas.

Susceptible agents can have symptoms similar to COVID-19 due to non-COVID-19 dis-

eases, such as a common cold or seasonal influenza.[44] We assume that this population is

constant throughout the duration of the simulation. Since these susceptible agents are sus-

pected of having COVID-19, they can undergo testing and thus introduce two additional

elements in our model: i) they increase the count of people being tested, and therefore the

burden on testing sites, and ii) they can contract COVID-19 upon interacting with infected

people at the testing site. Finally, such agents can be erroneously tested positive during

their recovery from the non-COVID-19 disease. However, after recovery, these agents are

still susceptible to COVID-19.

To simulate realistic COVID-19 epidemic conditions, we introduce school closures, a state-

wide lockdown, and the three reopening phases I, II, and III. School closure is modeled by

omitting the contribution of schools to the transmission of COVID-19. Similarly, lockdown

and reopening phases are characterized by tuning the contributions of the workplaces to

the transmission. The number of tests performed per day can be time-dependent, following

real practices.[43]

3.2 COVID-19 transmission dynamics

The proposed epidemiological model consists of COVID-19 transmission through agents

interacting at their residences and public places. The agents reside in households, retire-

ment homes, or hospitals when being treated for conditions other than COVID-19. They
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3.2 COVID-19 transmission dynamics

can also attend schools and go to work; employees of schools, retirement homes, and hospi-

tals are modeled explicitly for their high-risk and critical role. Following the original work

of Ferguson, there is no distinction between times of the day, for example day versus night.

At each simulation step, ∆t, an agent may contract the disease or infect other agents at

home, school, workplace, or hospital.[19, 20] For example, if a susceptible agent is a high school

student who also works part-time, their probability of being infected with COVID-19 is

computed based on their contacts at their school, workplace, and household. When agents

are being tested or hospitalized, they do not infect those in their households, schools, or

workplaces.

The model comprises a set of agents N = {1, ..., n} and a set of locations L = {1, ..., L}.

According to the town database, an agent is associated with a subset of locations deter-

mined by the model input. Formally, we define a set of functions fq : N → L, with q ∈

{H,W, S,Rh,Hsp}, so that function fq associates each agent i ∈ V to the corresponding lo-

cation ` ∈ L of type q. The types of locations are households (H), workplaces (W), schools

(S), retirement homes (Rh), and hospitals (Hsp). Note that each agent may not be associ-

ated to all the types of locations. To denote that agent i is not associated to a location of

type q, we write fq(i) = ∅. We denote by n` the number of agents associated with location

`.

At every simulation step (of duration ∆t), infected agents assigned to location ` contribute

to the probability of infection for the susceptible agents at that location. Specifically, the

probability that an agent i that is susceptible at time t becomes infected in the following

time-step is equal to

pi(t) := 1− e−∆tΛi(t), (1)

where the non-negative time-varying parameter Λi (t) quantifies the contagion risk at all

the locations associated with the agent and it is equal to

Λi (t) := λH,fH(i) (t) + λW,fW(i) (t) + λS,fSi (t) + λRh,fRh(i) (t) + λHsp,fHsp(i) (t) , (2)

where each contribution represents the so-called infectiousness function of each type of lo-

cation associated with agent i, with the understanding that λq,∅ = 0, that is, if agent i is

not associated with any location of type q, than locations of type q do not contribute to

the agent’s contagion risk.
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3.3 Testing

The infectiousness function of a location ` of type q at time t, λq,` (t), due to all the agents

(indexed by k) at that location, is defined as

λq,` (t) :=
1

n
αq

`

n∑̀
k=1

(Ekρkβq,k + Sykψ`ckρkβq,k) . (3)

The sum is performed over the n` agents who are associated with location ` and it rep-

resents a weighted ratio between the number of exposed and infected agents and all the

agents at the location; Ek is an indicator function that is equal to 1 if agent k is in the ex-

posed (E) and has become infectious and 0 otherwise; Syk is equal to 1 if agent k is symp-

tomatic (Sy) and 0 otherwise. The parameter ρk ≥ 0 models variability in infectiousness

among the agents; ck > 1 is a factor that measures the increased infectiousness of a symp-

tomatic agent compared to an exposed one; αq ≤ 1 is a size scaling parameter (less than

one for households and one otherwise); ψ` ∈ [0, 1] is an absenteeism correction for work-

places and schools, which is used to model reduction of agent presence upon developing

symptoms; βq,k ≥ 0 is a transmission rate that generally depends on the type of location

q and on the activity of agent k at that particular location (for example, the transmission

rate for an agent who is being tested at a hospital is different from an agent who works

there). Further details of the model are provided in Section S1 of the Supporting Informa-

tion.

When an agent becomes exposed, they undergo an incubation period. The latency of the

incubation is drawn from a log-normal distribution, which allows for the possibility of some

agents to not spread the virus until they develop symptoms. Once the incubation ends, an

agent transitions from exposed to symptomatic. The model allows for a portion of exposed

agents to recover without symptoms (commonly referred to as asymptomatic individuals)

by including their recovery time within their incubation period.

3.3 Testing

Both exposed and symptomatic agents can undergo testing for COVID-19 according to

two different probabilities. When an agent is scheduled to be tested, they are placed under

home isolation and randomly assigned to a testing location — a drive-through or a hospi-

tal. We assume that the test is performed for a fixed amount of time after the decision to

be tested, and similarly that the result of a test appears after a fixed delay following the
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3.4 Treatment

test. The test result can be either positive (true or false) or negative (true or false), with

negative results causing the agent to return from home isolation to the community. An

exposed agent confirmed positive for COVID-19 remains in home isolation, while a symp-

tomatic one is given an initial treatment.

Testing is performed differently for exposed hospital employees and patients originally ad-

mitted for non-COVID-19-related diagnosis (such as a car accident or cancer treatment).

These agents do not undergo home isolation, and their testing is always performed in the

hospitals they work or reside in, without the option of a test car. The symptomatic hos-

pital staff is home isolated prior to receiving the test results, while the non-COVID-19 pa-

tients stay in the hospital and, upon developing COVID-19 symptoms, they are counted

among hospitalized COVID-19 cases. This fine level of detail is needed to capture evidence

of extensive COVID-19 spreading in the early stage of the pandemic in hospitals.[45, 46, 47]

After confirming COVID-19, agents are assigned treatment.

With the exception of hospital employees and patients who develop disease symptoms, the

model does not apply any explicit contact tracing. Instead, case detection is implemented

in an average sense. Whether an agent will be tested is determined by stochastic sampling

of a uniform distribution, followed by a comparison with testing prevalence at that time.

3.4 Treatment

When a symptomatic agent is confirmed COVID-19 positive, they are assigned to one of

the three formal treatments according to a probabilistic mechanism: home isolation, reg-

ular hospitalization, and hospitalization in an ICU.[22, 24] Afterward, the agent can change

treatment types depending on their recovery status and clinically observed COVID-19 pro-

gression. The agent’s initial treatment is chosen based on the probability of normal hos-

pitalization and hospitalization in an ICU obtained from clinical data depending on their

age.[22, 48] In both cases, agents are assigned to a random hospital. If hospitalized in an

ICU, their recovery status is recomputed based on an agent’s probability of dying in an

ICU.[22] All other agents are placed in home isolation.

Treatment changes include all possible transfers except direct transfer from an ICU to home

isolation, as outlined in Figure 3. In our model, whether an agent dies or recovers is deter-

mined upfront when the agent develops symptoms of the disease. Treatment transitions are

13



3.5 Initialization and vaccination

closely related to an agent’s future recovery outlooks. An agent originally determined to

die and treated in an ICU will die in the ICU.[49] Upon recovering, agents will be trans-

ferred to normal hospitalization after an amount of time decided a priori.[22] Any dying

agent who was previously confirmed COVID-19 positive would be placed in an ICU for a

predetermined number of days before death.[50] A recovering agent initially hospitalized

outside an ICU can become home isolated if their recovery time exceeds their hospital stay.[49]

Finally, an agent recovering while isolated at home can become hospitalized for a certain

amount of time, a commonly observed course for the disease.[49, 51]

3.5 Initialization and vaccination

At the beginning of the simulation, we initialize the entire population as susceptible, as-

suming no prior immunity in a virtually COVID-19-free population. Then, a predefined

number of agents are assigned the exposed health state. These agents can only be tested

after developing symptoms.

Part of the susceptible population can also be vaccinated and thus become immune. The

vaccines are distributed by two modes: i) randomly throughout the entire population, or ii)

to a specific type of agent, such as healthcare workers or retirement home employees.

3.6 Agent removal

Disease progression can have two possible outcomes: recovery or death. The outcome is

determined using age-based mortality data, the agent’s treatment requirements, and cur-

rent testing prevalence. An agent’s mortality also depends on whether they are tested and

receive proper medical attention.[50, 52, 53, 54, 55] Specifically, while asymptomatic agents al-

ways recover, we distinguish between two events that can occur to symptomatic agents and

influence their probability of dying.

The model decides if an agent needs ICU care upon exhibiting symptoms. An agent who

needs an ICU will be admitted upon being tested. Not all the agents who need an ICU

will be admitted to one; those who are not tested, and therefore not diagnosed, will die.

Among the agents who do not need an ICU, a fraction may still die, for example, due to

heart failure, stroke, or a rapid decline in condition; some of these individuals will die in

their homes, but some others will formally be admitted to ICU, despite not needing it, based
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3.6 Agent removal

on the agent’s expected lifetime.

All these probabilities are available from empirical observations except the probability of

dying without the need of an ICU. In order to estimate this quantity, we perform the fol-

lowing calculations. We expand the overall probability that a symptomatic agent dies, P (D|Sy),

using the law of total probability with respect to the conditioning on whether the symp-

tomatic agent needs ICU treatment, N , and the event that the symptomatic agent does

not need an ICU, N ,

P (D|Sy) = P (D|N)P (N) + P (D|N)P (N) . (4)

By rearranging Equation (4), we obtain the following closed-form expression for the re-

quired probability

P (D|N) =
P (D|Sy)− P (D|N)P (N)

1− P (N)
. (5)

In the following, we derive the three expressions for P (D|Sy), P (D|N), and P (N), which

are needed to compute the formula.

First, the probability of dying for symptomatic agents, P (D|Sy), is inferred from the infec-

tion fatality ratio (IFR) available in the literature.[22] Since the IFR is based on serology-

informed estimations, it reflects the probability of dying for an infected agents (regard-

less of whether the agent is symptomatic or not). Assuming that asymptomatic agents do

not die, we can compute the overall time-averaged probability that a symptomatic agent

dies by re-scaling the IFR by the probability of developing symptoms once contracting

COVID-19, P (Sy|CoV), obtaining

P (D|Sy) =
IFR

P (Sy|CoV)
. (6)

Second, the probability of dying if an agent needs an ICU, P (D|N), in Equation (5) is com-

puted depending on whether they are tested once they become symptomatic. Specifically,

by means of the law of total probability with respect to the conditioning on the event T ,

we have

P (D|N) = 1− (1− P (D|N, T )) · P (T |Sy) , (7)

where P (T |Sy) is the probability that a symptomatic agent is tested. Since the IFR used

in Equation 6 is a temporal average over the entire duration of the pandemic, the probabil-

ity P (T |Sy) is also estimated as an average over the entire duration of the pandemic, from

data reported in Supplementary Table S9.
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3.7 Susceptible agents with COVID-19-like symptoms

Third, the probability that a symptomatic agent needs ICU care, P (N), is computed from

empirical data on the probability that an agent needs to be hospitalized, P (H), and the

probability that symptomatic hospitalized agents need ICU care, P (N |H), yielding

P (N) = P (N |H)P (H) , (8)

where these empirical data are reported in Supplementary Table S7.

Finally, the required probability is computed by substituting Equations (6), (7), and (8)

into Equation (5).

When an agent dies, they are removed from all public places, hospitals, or current resi-

dences. Recovered agents become active in public locations, and if hospitalized, return to

their households or retirement homes. Recovered agents who were earlier non-COVID-19

patients are placed back into a hospital. Recovered agents who were previously hospitalized

for a condition other than COVID-19 are readmitted to the hospital.

3.7 Susceptible agents with COVID-19-like symptoms

Susceptible agents with COVID-19-like symptoms do not exist in the model until the on-

set of testing. Once testing efforts begin, these agents are assigned as a fraction of those

who are still susceptible. A portion of these agents will undergo testing and receive either

a false positive or a true negative result. Therefore, the probability of a susceptible agent

with COVID-19-like symptoms to be tested, P (T, Sy,CoV), is given as

P (T, Sy,CoV) =
(
P (true negative|Sy) + P (false positive|Sy)

)
P (T ). (9)

We assume that the probability of getting a false negative among COVID-19-infected symp-

tomatic agents when the epidemic prevalence is low is negligible.[56, 57] We can then approx-

imate the probability of a true negative by the probability of receiving a negative result.

If scheduled to be tested, the agent is assigned a test time and a testing site (either a ran-

domly chosen hospital or a drive-through test). When the test occurs, the time is selected

from a Gamma distribution to avoid these agents undergoing home isolation and testing si-

multaneously. Similar to the procedure for an infected agent undergoing testing, the agent

displaying COVID-19-like symptoms is placed under home isolation for a certain amount

of time before testing occurs. Home isolation lasts until the agent is confirmed negative or

reaching “recovery” after a false-positive result. The duration of the home isolation before
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3.8 Lockdown and reopening events

the test and the subsequent wait time for results is the same for these agents as for the in-

fected ones.

If an agent with COVID-19-like symptoms contracts COVID-19, they become an exposed

agent. To maintain a fixed fraction of such agents in the population, a new susceptible agent

is then randomly chosen to take their place, provided such agents are still present in the

population.

3.8 Lockdown and reopening events

Our model provides options to simulate school closure, lockdown, and three reopening phases,

I, II, and III. School closures are simulated by zeroing the transmission rates of students

and employees. The business closure and reopening are implemented through user-defined

reduction or increase of the initial workplace transmission rates, respectively. The model

also allows for adjusting the absenteeism correction of a workplace, that is, ψ` in Equa-

tion (3), to a lockdown value, valid through the reopening phases. The transmission pa-

rameters for households, hospitals, and retirement homes remain unchanged throughout

the simulation.

3.9 Model parameters

Parameters originate from several sources: established literature data used in other

ABMs[19, 20, 21, 22], clinical data on COVID-19[22, 49, 51, 58], and information from a clinical

consultant who is part of the team. In addition, due to the lack of concrete data, some of

our parameters are informed estimates, in line with the current understanding of COVID-

19 from scientific literature and the media. Furthermore, some parameter types are identi-

fied from reported data through model calibration. These latter parameters are the num-

ber of initially infected agents, time-varying testing prevalence, COVID-19 transmission

changes following closures and reopening phases, and asymptomatic agents’ age distribu-

tion. Parameters, data sources, and assumptions are listed and indicated in Section S2 of

the Supporting Information.

There are four groups of model parameters: COVID-19 transmission dynamics parameters,

testing parameters, parameters related to closure and reopening events, and other parame-

ters, all listed as Tables in the Supporting Information. Transmission dynamics originates
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from the COVID-19 agent-based model in Ferguson et al.[22] While not explicitly stated,

the transmission dynamics parameters used therein mirror those previously developed for

influenza by the same research group. Such a choice is justified since COVID-19 is a res-

piratory disease that spreads[19, 20] similarly to influenza. However, to make the trans-

mission rates more representative, we further scale them by the ratio of reproductive num-

bers, R0, for these two diseases. R0 represents the average number of secondary infections

directly caused by a single infected individual.[59] Following analogous models and proce-

dures, R0 for COVID-19 was estimated to be 2.4,[22] while for influenza it was reported as

R0 = 1.7, resulting in a scaling factor of 1.41.[20]

Hospital-related transmission rates are calculated by scaling equivalent non-hospital rates

with data from our clinical consultant in Italy. Specifically, we use the fact that there was

a 7.2% increase in infection among hospital employees in a given week in Italy compared to

a 3.7% increase in the general population. Thus, we use a ratio of these percentages as our

scaling factor to multiply a base rate of choice. The base rate for a hospital employee is the

workplace rate, and for an agent hospitalized as a non-COVID-19 patient, it is the house-

hold rate. Other hospital rates are set relative to these following personal communication

with the clinical consultant in Italy.

Hospitalization duration in the model is derived from the literature,[22] and linearly scaled

by a factor of 0.39 according to the data in the paper by Richardson et al.[49] which are

specific to the geographic region considered in this work. Specifically, the study by Richard-

son et al.[49] provides actual hospitalization duration in New York City, though without dis-

tinguishing between ICU and non-ICU treatment, and relative lengths of these two. Hence,

we use the ratio of the total hospital treatment duration reported in Richardson et al.[49]

and Ferguson et al.[22] to obtain locally realistic hospitalization periods.

4 Model validation

To demonstrate our platform’s viability, we simulated the spread of COVID-19 from Febru-

ary 22nd to July 14th, 2020, from the onset of the epidemic to phase three of the reopening.

In particular, this window includes the period in which all the schools in the town of New

Rochelle were closed (March 13th, 2020), followed by the restrictive state-wide lockdown
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during which only essential businesses, such as grocery stores, were allowed to operate.

In our calibration, we used officially reported data on the total number of detected infec-

tions, number of people currently infected with the disease, and the total number of fatali-

ties. From the cumulative number of cases and mortality, we extracted the number of new

cases and deaths reported each week. To calibrate upon this dataset, we varied the ini-

tial number of infected agents, the percentage of tested population, the reduction in work-

place transmission rates during the lockdown and its subsequent increase during the re-

opening periods, and age-dependent fractions of asymptomatic agents as is summarized

in Section S2 of the Supporting Information. Parameters were manually initialized, while

the testing percentages were later refined using simplex optimization in MATLAB via the

fminsearch function. Testing prevalence was set to vary with time, mimicking the actual

testing practices in the region.[43] In other words, the fraction of infected individuals who

could be tested was time-dependent. To match it,To match this time dependence, we

used the data on newly confirmed cases every week during the simulation period, computed

from total detected cases. We performed 100 realizations of the simulation, randomly se-

lecting a fixed number of initially infected agents each time. All the parameters used in the

simulations are listed in Section S2 of the Supporting Information. The computational per-

formance of the model is summarized in Section S4 of the Supporting Information; the im-

plementation is fairly efficient and approachable for general use, with 600 steps (150 days)

of the simulation taking less than 30s on a standard laptop.

Figures 4 and 5 show the results of the validation. Figure 4 compares the model output

with real data along with five different metrics: i) the total number of cases, ii) the number

of new cases, iii) the weekly average of active cases, iv) the total number of deaths, and v)

the number of deaths in a week. The total number of cases was calculated as the number

of agents who tested positive, including false positives and those who died without treat-

ment. The number of new weekly cases was calculated as the weekly increase in the to-

tal number of cases. Working with weekly averages facilitates comparisons by filtering out

spurious oscillations from uneven reporting and data collection by the authorities. In our

model, the number of active cases was computed as the number of agents undergoing treat-

ment confirmed positive or false positive. These were compared directly to the reported

weekly average. The number of deaths includes both treated and undetected, untreated
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agents, assuming that COVID-19 would be confirmed in individuals who have died, regard-

less of their testing status. The number of deaths per week was computed as the weekly

rise in total fatalities.

A comparison of the total number of cases shows good agreement between the model and

real data obtained from official outlets of Westchester County.[42] Similarly, the number of

new cases is well predicted by our model. Looking closely, however, the model has a smooth

progression of the disease compared to a sudden high number of initial cases in the real

data. We note that our model imparts a simplistic scenario of the testing practice, whereby

an aggressive contact tracing followed the town’s initial case detection.[60] This likely re-

sulted in a large difference in the number of initial cases in our model versus the real data.

Simulating this particular scenario is currently outside the scope of our model.

In the case of weekly averages of active cases, the model reasonably matches real data trends.

At the same time, the mean value predicted by the model is slightly lower than the reported

values, likely due to longer recovery times of COVID-19 patients than utilized in the model.

We note that compared to the total number of reported cases, which provide information

about new infections, the number of active cases also includes the process of recovery. Re-

garding the number of deaths, the reported values were obtained for the entire Westchester

County and scaled down to New Rochelle, proportionally to its population. Here too, we

find a close agreement between simulated and real data.

Figure 5 compares the total number of tests and positivity in our simulations with the avail-

able data from local testing practices. Similarly to the number of deaths, this data was re-

ported at the county level and was scaled down to match the population of New Rochelle

for a meaningful comparison. Our results indicate reasonable agreement in the early phases

of the epidemic with discrepancies later on. The lower number of total tests in our model

is due to the rule used for testing, which is based on the total number of exposed and symp-

tomatic individuals. In contrast, in reality, testing was ramped up to include the general

population. The only susceptible agents who can be tested in the model, in its present in-

carnation, are those exhibiting COVID-19-like symptoms. The fraction of these individuals

is low and chosen upfront in the model. This trend is also visible in the positivity values,

whereby we find an inflated positivity in our simulations by a factor of four compared to

the real data, again due to limited testing in our model. This difference shows that nega-
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Figure 4: Comparison of the modeled COVID-19 epidemic and officially reported data: a) The cumulative

number of infections; b) New infections detected within a week; c) Active cases averaged over each week;

d) The total number of deaths; e) Number of deaths in each week. The grey lines represent each of the

simulation’s 100 realizations, the blue line is the average value, and black circles are the reported data.

tive testing outcomes do not affect the general number of cases, as evidenced by the model

agreement on the number of cases and deaths.

Figure 6 shows the number of agents who were undergoing a given treatment type. The

number of agents isolated at home comprised individuals who were waiting for a test or

test results. The prevalence of each type of treatment qualitatively matches the general

distribution of cases. Home isolated individuals constituted the bulk of infected agents, fol-

lowed by hospitalized individuals, and finally, a few hospitalized in ICUs.

According to the New York State Department of Health, the New Rochelle hospital has

211 general and 12 ICU beds at its disposal under normal circumstances.[39] In all but one

realizations of our model, the number of hospitalized agents was always below the reported

normal bed volume. In the model, the ICU demand was on average within standard hospi-

tal capacities, but in many simulations exceeded it two or even threefold. Given the expan-

sion of hospital capacity as a response to COVID-19[61] and in the absence of reliable data,

we consider this agreement reasonable.
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Figure 5: Comparison of modeled and reported testing practices: a) The total number of performed tests;

b) Fraction of positive test results, including false positives: the grey lines represent each of 100 realiza-

tions of the simulation, the blue line is the average value, and dashed black line is the reported data.

Figure 6: The number of agents undergoing each of the three treatment types at different time points in

the simulation. The grey lines represent 100 realizations of the simulation; the blue line is the average

value.
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5 Vaccination study

To demonstrate the value of our platform, we performed a comparative analysis of different

vaccination strategies. Specifically, we evaluated the effect of vaccinating only a high-risk

groups of individuals, hospital, school, or retirement home employees, or retirement home

residents and compare the results to a , compared to random immunization across the en-

tire population.

The time period of this prospective study was aligned with the first wave of the epidemic,

making the previously calibrated model the basis for the prediction. None of the parame-

ters were changed in this study with respect to the earlier validation. The only differences

in this vaccination study were the absence of school closures and any form of lockdown.

In this context, the study also investigated the consequences of leaving schools and non-

essential businesses open throughout the first wave of the epidemic upon the availability of

a vaccine.

Vaccination was implemented in the simulation on March 2nd, simultaneously with the be-

ginning of testing in New Rochelle. All the vaccines were distributed simultaneously, grant-

ing full protection against the disease. By then, some of the agents were already infected

and were therefore excluded from vaccination. Susceptible agents with COVID-19-like symp-

toms were not vaccinated either, in an attempt to maintain an approximately fixed number

of such agents in the simulation. We performed threesix sets of simulations with vaccina-

tions of: i) hospital employees only, ii) school employees only, iii) retirement home employ-

ees only, iv) retirement home residents only, v) randomly selected fraction of the popula-

tion, with the same size as the number of hospital employees, and vi) about a quarter of

the town, corresponding to ten times the number of hospital employees.

Figure 7 shows the predictions from these threesix “what-if” scenarios. The importance of

closures is evident, with numbers of infections and fatalities exceeding reality many times.

The vaccination of hospital employees resulted in only minor differences compared with the

vaccination of an equivalent number of individuals among the general population. Simi-

lar observations can be made about targeted immunization of other vulnerable groups of

agents. Significant differences only occur in mortality when vaccinating the elderly resi-

dents of retirement homes. Although both, targeted and random, approaches had some

effect on COVID-19 spread, massive immunization was the only truly impactful strategy.
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Figure 7: These figures show the spread of COVID-19 epidemics across a range of “what-if” scenarios,

when no lockdowns or closures were set in place, and vaccinations were administered selectively. Only

means are reported for visual clarity; also, officially reported data (black circles) are presented for refer-

ence. In the scenario where the only vaccinated agents were hospital employeesones from specific high-risk

groups the vaccination covered on average 2,201 hospital employees (±11), 7,577 school employees (±11),

494 retirement home employees (±2), and 1,397 retirement home residents (±5)., this covered an average of

2,202 agents with a standard deviation of 7. The number in parentheses indicates the standard deviation.

The same number was utilized for the second scenario in which the general population was vaccinated.In

the fifth scenario, the number of people in the general population vaccinated was equivalent to the number

of vaccinated hospital employees. A tenfold increase in the number of vaccinated individuals among the

general population was considered in the third scenario.

This finding is consistent with “herd immunity” predictions where effective containment of

COVID-19 can only be achieved with the large majority of the population acquiring immunity.[62]

6 Conclusions

Until widespread vaccination efforts are underway, maintaining a balance between safety

and normalcy during the current COVID-19 crisis requires the use of non-pharmaceutical

prevention measures as well as efficient detection strategies. The large number of testing

strategies, unknowns, and high levels of uncertainties of this epidemic calls for the princi-
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pled use of predictive computational models, potentially informing policy-making with re-

spect to widespread vaccination efforts.

In this work, we proposed a high-resolution ABM of COVID-19, developed for granular

simulations of a small city or town, where each individual is explicitly modeled. We intro-

duced several elements of novelty with respect to state of the art on ABM, including i) dif-

ferent testing strategies in hospitals and drive-throughs; ii) time variations in testing preva-

lence; iii) multiple types of treatment, from home isolation to hospitalization in an ICU;

iv) the presence of susceptible agents who have COVID-19-like symptoms due to other in-

fections; v) explicit modeling of employees of hospitals, schools, and retirement homes; vi)

school and business closures and reopenings; vii) comprehensive model calibration with of-

ficially reported data; and viii) incorporation of expert knowledge from the field.i) multiple

different testing strategies in hospitals and drive-throughs; ii) time variations in testing

prevalence; iii) multiple types of treatment, from home isolation to hospitalization in an

ICU; iv) the presence of susceptible agents who have COVID-19-like symptoms due to other

infections; v) explicit modeling of employees of hospitals, schools, and retirement homes; and

vi) school and business closures and reopenings.

We applied our model to the small US town of New Rochelle, where one of the first COVID-

19 outbreaks in the country took place. Using an in-house, detailed database of building

locations, public and residential, and Census data, we created a geographically and statis-

tically accurate representation of the town and its population. We demonstrated the possi-

bility of accurately capturing the first wave of the COVID-19 epidemic in the town.

As New Rochelle is a representative US small town, we believe that our validated model

can serve as an analysis platform for numerous similar towns across the entire country, many

currently facing the COVID-19 crisis. To illustrate the model’s value in analyzing prospec-

tive “what-if” questions, we performed an immunization study in which we evaluated threeseveral

vaccination strategies of future importance. In particular, we compared the impact of vac-

cination of select group of vulnerable individuals, including school employees, retirement

home employees and residents, and the totality of the two thousand hospital employees in

the town, a randomly selected group of two thousand individuals, and twenty thousand

randomly selected individuals out of the eighty thousand people living in New Rochelle.

Our results suggest that prioritizing hospital employees’ vaccination of high-risk individuals
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has a marginal effect on the count of COVID-19 deaths. Predictably, a much more signifi-

cant improvement is registered when a quarter of the town is vaccinated. Importantly, the

benefits of the restrictive measures in place during the first wave greatly surpass those from

any of these selective vaccination scenarios.

While undoubtedly useful, our model bears several limitations. First, the model lacks ex-

plicit agent mobility and random contacts, which manifest in a faster decline of the epi-

demic near the end of the simulation. The original model by Ferguson et al.[19, 20], serving

as the basis for our own, had an additional term to the model disease spreading through

random contacts in the community. However, these contacts were based on commute and

travel data at the level of the entire country, which is not directly applicable to the prob-

lem at hand of a small town. Simulating truly random interactions using a contact net-

work approach similar to Hinch et al.[24] may offer an alternative, which will be part of our

future work. Along these lines, the impact of local travel and commute can further be in-

cluded in the model by integrating traffic flow simulations.[63, 64, 65]

In addition to mobility and random contacts, our model does not include testing the gen-

eral population, leading to possible under-detection of cases in later reopening stages. While

the model allows for testing uninfected individuals with symptoms, massive community

testing is needed to align its outcomes with reality in later phases of the epidemic. Testing

of general population along with random interactions is also expected to highlight the ef-

fects of different testing strategies already encoded within the model. Combined with con-

tact tracing options, testing of general population is part of the next step in our platform’s

development.

Another limitation of our approach is in the modeling of hospitals in terms of their work-

force and capacity. Specifically, we assume that infections of hospital employees do not

trigger changes in the treatment of hospital patients and that hospitals have infinite beds

and ICUs. Finally, we do not explicitly account for the use of personal protective equip-

ment (PPEs), such as face coverings, and social distancing of agents. While these measures

are included indirectly through reduction of disease transmission during the lock-down and

reopening phases, the ability of specific agents to protect themselves from the contagion

would improve the granularity of the model and add a further realistic element, at the ex-

penses of the computational burden. Advantageous impact of PPEs and distancing can be
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introduced to both susceptible and infected agents in a similar way to agent’s current infec-

tiousness variability, and this will be one of our goals in the nearest future.

Despite these limitations, our model matched real data very closely as the epidemic pro-

gressed through its initial stages. This correspondence allowed us to prospect and analyze

alternative scenarios for COVID-19, in which vaccination was accessible right at the on-

set of the first wave. Beyond the timely study of vaccination strategies, our model can be

adapted to explore a range of pressing problems that are ahead of us by interested users

who can directly modify our open-source platform. For example, the model can be swiftly

adapted to describe the concurrent spread of influenza with COVID-19, which is expected

to exacerbate the impact of second and third waves. Likewise, the model can provide clear

and quantitative support to the long-debated recommendations regarding the need to avoid

large gatherings and always use masks.

Supporting information

Supporting Information is available from the Wiley Online Library or the corresponding
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