- Academics

# Applied Physics, B.S.

Applied Physics is devoted to the study and understanding of nature. Considered the most fundamental science, it deals with the constituents, properties, and evolution of the entire universe, from the smallest subatomic particles to the largest galaxies.

At the School of Engineering, our BS in Applied Physics students study physics while working directly alongside engineers. That relationship provides lasting value, as graduates learn to adapt their careers to existing opportunities. You’re encouraged to explore your interests in such fields as entrepreneurship, biophysics, or biomedical instrumentation. Integrated circuit electronics, scanning probe metrology, and computational science are also options. Best of all, your explorations can propel you toward a dual degree, particularly in subjects such as electrical engineering, mechanical engineering, and chemistry.

With a strong foundation in physics, many of our students go on to pursue advanced studies at the master’s level. Many of our graduates seek positions within and beyond the sciences, in fields that include law, writing, and business. Others find a career in disciplines that rely on a solid foundation in physics, be it in industry, government, or education.

### Curriculum

OverviewYou must complete 128 credits, as defined below, to graduate from the School of Engineering with a Bachelor of Science in Applied Physics. Please note that the curriculum that follows applies to students who began classes in the fall of 2020 or later. If students entered the School of Engineering prior to that date, please consult the curriculum and typical course schedule for students entering spring 2020 or earlier.

The Department of Applied Physics also offers a Minor in Applied Physics. A full list of the department's undergraduate offerings is available here.

Core Physics Requirements (37 Credits)

- 2 Credits Physics: the Genesis of Technology PH-UY 1002
- This course introduces contemporary topics in physics, along with readings and discussions of topics with technological implications.

Prerequisite: Only first-year students are permitted to enroll in this introductory level course. - 3 Credits Mechanics PH-UY 1013
- This course is the first of a three-semester lecture sequence in general physics for science and engineering students. Motion of particles and systems of particles. One-dimensional motion. Vectors and two-dimensional motions. Forces and acceleration. Conservation of energy and momentum. Rotations. The free and driven harmonic oscillator. Gravitation. (This class meets four hours per week for lectures and recitation.)

Prerequisites: MA-UY 1024 or an approved equivalent. Corequisites: MA-UY 1124 or approved equivalent, and EX-UY 1 - 3 Credits Electricity, Magnetism, & Fluids PH-UY 2023
- This is the second course of a three-semester lecture sequence in general physics for science and engineering students. Fluids at rest and in motion. An introduction to electric and magnetic forces and fields. Electric charge density. Electric fields from simple charge distributions. Electric potential. Capacitance. Magnetic forces. Magnetic field from a current loop. Inductance. Magnetism in matter. Current and resistance. (This class meets four hours per week for lectures and recitation.)

Prerequisites: PH-UY 1013 and MA-UY 1124 or an approved equivalent. Co-requisite: EX-UY 1 - 3 Credits Waves, Optics, & Thermodynamics PH-UY 2033
- This is the third course of a three-semester lecture sequence in general physics for science and engineering students. Water, sound and electromagnetic waves. Reflection, scattering and absorption. Standing waves and spectra. Superposition, diffraction and beats. Geometrical optics. Introduction to thermodynamics; temperature, heat, and entropy. (This class meets four hours per week for lectures and recitation.)

Prerequisites: PH-UY 2121 and PH-UY 2023. Co-requisites: EX-UY 1. - 4 Credits Analytical Mechanics PH-UY 2104
- The course covers statics by virtual work and potential energy methods. Stability of equilibrium. Particle dynamics, harmonic oscillator and planetary motion. Rigid body dynamics in two and three dimensions. Lagrangian mechanics. Dynamics of oscillating systems.

Prerequisite: PH-UY 2023; Co-requisite: MA-UY 2034 - 1 Credits General Physics Laboratory I PH-UY 2121
- PH-UY 2121 General Physics Laboratory I (0.5:1:0:1). An introductory level experimental course. Fundamental laboratory experiments in classical mechanics and electrostatics. Stresses basic experimental techniques, error analysis, and written presentation of experiment results. Experiments require progressively more detailed and sophisticated analysis. This laboratory class meets for three hours on alternate weeks.

Prerequisites: PH-UY 1013 and MA-UY 1124 or equivalent. Co-requisite: PH-UY 2023. - 1 Credits General Physics Laboratory II PH-UY 2131
- PH 2131 General Physics Laboratory II (0.5:1:0:1). The second part of the introductory physics laboratory program. Fundamental laboratory experiments in E&M, waves, optics, and thermodynamics. Stresses experimental models and design, error and data analysis. This laboratory class meets for three hours on alternate weeks.

Prerequisites: PH-UY 2121 and PH-UY 2023. Corequisite: PH-UY 2033 - 4 Credits Introduction to Modern and Solid State Physics PH-UY 2344
- Special theory of relativity, Michelson Morley experiment. Planck's quantum hypothesis, photoelectric effect, Compton effect, Rutherford scattering, Bohr's atom, DeBroglie wavelength, electron diffraction, wave function, uncertainty principle, Schrodinger equation. Application to: square well potential, one electron atom. Atomic nucleus, fission and fusion. Energy bands in a periodic lattice, Kronig Penney model, valence, conduction bands, impurity states, electron mobility. Semiconductor properties. Introduction to superconductivity; electron pairs, energy gap, Josephson effect.

Prerequisites: PH-UY 2023; Co-requisite: PH-UY 2033 and MA-UY 2034. - 2 Credits Junior Physics Laboratory PH-UY 3002
- An intermediate level laboratory course providing in depth exposure to a selection of classic physics experiments. Students' experimental skill set is expanded and data analysis and communication skills developed.

Prerequisites: PH-UY 2131 and PH-UY 2033; Co-requisites: PH-UY 2344 and MA-UY 2224. - 4 Credits Electricity and Magnetism PH-UY 3234
- The course covers properties of the electrostatic, magnetostatic and electromagnetic field in vacuum and in material media. Maxwell's equations with applications to elementary problems.

Prerequisites: PH-UY 2033 and MA-UY 2114. - 1 Credits Guided Studies in Physics PH-UY 3801
- These guided studies courses in physics are supervised by staff member.

Prerequisites: Physics adviser approval. (Course may be repeated for additional credit.) - 4 Credits Thermodynamics and Statistical Physics PH-UY 4124
- The course covers fundamental laws of macroscopic thermodynamics, heat, internal energy and entropy. Topics include an introduction to statistical physics, and applications of Maxwell, Fermi-Dirac and Bose-Einstein distributions.

Prerequisites: PH-UY 2344, MA-UY 2114, and MA-UY 2224. - 2 Credits Senior Seminar in Physics PH-UY 4912
- Senior physics students, in consultation with the instructor, study and prepare presentations on several current research topics in the general area of interdisciplinary physics. Students? performance is based on the mastery of the material chosen and also on the quality of the presentation made to the instructor and the seminar members.
- 3 Credits Quantum Mechanics I PH-GY 6673
- Quantum mechanics with applications to atomic systems. The use of Schrodinger's equations. Angular momentum and spin. Semi-classical theory of field-matter interaction.

Prerequisites: MA-UY 2114, PH-UY 3234 equivalents.

Other Required Courses (37 Credits)

- 4 Credits Calculus I for Engineers MA-UY 1024
- This course covers: Library of Functions, functions of one variable. Limits, derivatives of functions defined by graphs, tables and formulas, differentiation rules for power, polynomial, exponential and logarithmic functions, derivatives of trigonometric functions, the product and quotient rules, the chain rule, applications of the chain rule, maxima and minima, optimization. The definite integral, the Fundamental Theorem of Calculus and interpretations, theorems about definite integrals, anti-derivatives. MA-UY 1324 is for students who wish to take MA-UY 1024 but need more review of precalculus. MA-UY 1324 covers the same material as MA-UY 1024 but with more contact hours per week, incorporating a full discussion of the required precalculus topics.

Prerequisite: Placement Exam or MA-UY 912 or MA-UY 914 (with a grade of B or better). Corequisite: EX-UY 1 - 4 Credits Calculus II for Engineers MA-UY 1124
- This course covers techniques of integration, introduction to ordinary differential equations, improper integrals, numerical methods of integration, applications of integration, sequences, series, power series, approximations of functions via Taylor polynomials, Taylor series, functions of two variables, graphs of functions of two variables, contour diagrams, linear functions, functions of three variables. MA-UY 1424 is for students who wish to take MA-UY 1124 but need more review of precalculus. MA-UY 1424 covers the same material as MA-UY 1124 but with more contact hours per week, incorporating a full discussion of the required precalculus topics.

Prerequisites: MA-UY 1022 (with a grade of B or better) or MA-UY 1024 or MA-UY 1324 (with a grade of B or better).

Corequisite: EX-UY 1. - 4 Credits Linear Algebra and Differential Equations MA-UY 2034
- MA-UY 2034 is an introduction to ordinary differential equations and linear algebra. The course develops the techniques for the analytic and numeric solutions of ordinary differential equations (and systems) that are widely used in modern engineering and science. Linear algebra is used as a tool for solving systems of linear equations as well as for understanding the structure of solutions to linear (systems) of differential equations. Topics covered include the fundamental concepts of linear algebra such as Gaussian elimination, matrix theory, linear transformations, vector spaces, subspaces, basis, eigenvectors, eigenvalues and the diagonalization of matrices, as well as the techniques for the analytic and numeric solutions of ordinary differential equations (and systems) that commonly appear in modern engineering and science.

Prerequisite: MA-UY 1124, MA-UY 1424 or MA-UY 1132. Note: Not open to students who have taken MA-UY 3044 or MA-UY 3054 or MA-UY 3083 or MA-UY 4204. - 4 Credits Calculus III: Multi-dimensional Calculus MA-UY 2114
- Vectors in the plane and space. Partial derivatives with applications, especially Lagrange multipliers. Double and triple integrals. Spherical and cylindrical coordinates. Surface and line integrals. Divergence, gradient, and curl. Theorems of Gauss and Stokes.

Prerequisite: MA-UY 1124 or MA-UY 1424 or MA-UY 1132. Anti-requisite: MA-UY 2514 - 4 Credits Data Analysis MA-UY 2224
- An introductory course to probability and statistics. It affords the student some acquaintance with both probability and statistics in a single term. Topics in Probability include mathematical treatment of chance; combinatorics; binomial, Poisson, and Gaussian distributions; the Central Limit Theorem and the normal approximation. Topics in Statistics include sampling distributions of sample mean and sample variance; normal, t-, and Chi-square distributions; confidence intervals; testing of hypotheses; least squares regression model. Applications to scientific, industrial, and financial data are integrated into the course.NOTE: Not open to students who have taken MA-UY 2233 or MA-UY 3012 or MA-UY 3022.

Prerequisite: MA-UY 1124, MA-UY1424, or MA-UY 1132 or MATH-UH 1020 or MATH-UH 1021 or MATH-SHU 151 - 4 Credits Introduction to Programming & Problem Solving CS-UY 1114
- This course introduces problem solving and computer programming and is for undergraduate Computer Science and Computer Engineering majors who have limited prior experience in programming in any language. The course covers fundamentals of computer programming and its underlying principles using the Python programming language. Concepts and methods introduced in the course are illustrated by examples from various disciplines. ABET competencies: a,b,c, e, f, g, k

Corequisite: EX-UY 1; Anti-requisite: CS-UY 1113 - 4 Credits Writing the Essay: EXPOS-UA 1
- This foundational writing course is required for CAS, Nursing, Social Work,

Steinhardt and Tandon incoming undergraduates. "Writing the Essay''

provides instruction and practice in critical reading, creative and logical

thinking, and clear, persuasive writing. Students learn to analyze and

interpret written texts, to use texts as evidence, to develop ideas, and to

write exploratory and argumentative essays. Exploration, inquiry,

reflection, analysis, revision, and collaborative learning are emphasized. - 4 Credits The Advanced College Essay EXPOS-UA 2
- The course follows Writing the Essay (EW 1013) and provides advanced instruction in analyzing and interpreting written texts from a variety of academic disciplines, using written texts as evidence, developing ideas, and writing argumentative essays. It stresses analysis, argument, reflection, revision, and collaborative learning.

Prerequisite(s): EW 1013 - 1 Credits Engineering and Technology Forum EG-UY 1001
- In this course the notion of invention, innovation and entrepreneurship (i2e) is introduced to the students? educational experience. Students will be exposed to elements of a research-intensive institution and diverse research performed by leading engineers, scientists, inventors and entrepreneurs.

Both of these:

- 3 Credits General Chemistry for Engineers CM-UY 1003
- This is a one-semester introductory lecture course in general chemistry. It covers chemical equations, stoichiometry, thermodynamics, gases, atomic and molecular structure, periodic table, chemical bonding, states of matter, chemical equilibrium, organic, inorganic and polymeric materials and electrochemistry. It is a foundation course for most engineering and science majors.

Corequisite: EX-UY 1

- 1 Credits General Chemistry for Engineers Laboratory CM-UY 1001
- This is a one-semester introductory laboratory course in general chemistry. It covers chemical equations, stoichiometry, thermodynamics, gases, atomic and molecular structure, periodic table, chemical bonding, states of matter, chemical equilibrium, organic, inorganic and polymeric materials and electrochemistry. It is a foundation course for most engineering and science majors.

Co-requisites: CM-UY 1003

Or both of these:

- 3 Credits General Chemistry I CM-UY 1013
- First half of a two-semester general chemistry course, covering chemical equations, stoichiometry, thermochemistry, properties of gases, atomic structure, periodic table, chemical bonding and molecular structure. It is a required course for all Biomolecular Science (BMS) majors and for all pre-med students.

Corequisite: EX-UY 1.

- 1 Credits General Chemistry Laboratory I CM-UY 1011
- First half of a two-semester general chemistry laboratory course, covering chemical equations, stoichiometry, thermochemistry, properties of gases, atomic structure, periodic table, chemical bonding and molecular structure. It is a required course for all Biomolecular Science (BMS) majors and for all pre-med students.

Corequisites: CM-UY 1013

Physics and Math Electives (20 Credits)

You should select 5 physics elective courses totaling at least 16 credits, and at least 4 credits of math.

Electives in the Humanities and Social Sciences (16 Credits)

You must take 16 elective credits in the humanities and social sciences, preferably with EXPOS-UA 2 as a prerequisite. To gain some breadth and depth of knowledge, it is required that you take courses in at least two disciplines and at least one course at an advanced level.

STEM & Free Electives, Project and Independent Study (18 Credits)

You should take 18 credits of independent study, STEM and free electives. It is strongly recommended that you use 6 of these credits toward a senior project or thesis topic. The program adviser must approve electives selected from other disciplines.

### Sample Course Schedule

OverviewThis typical course schedule provides guidance to students as to how they would normally be expected to complete the degree requirements. Students should be sure to consult their advisor before selecting courses for a particular semester as prerequisites and course offering patterns are the primary considerations affecting registration. This sequence applies to students who begin classes in the fall of 2020 and onwards. If you entered the School of Engineering prior to that date, please review the curriculum and typical course schedule for students entering prior to fall 2020.

First Year

#### Fall Semester

Both of these:

- 3 Credits General Chemistry for Engineers CM-UY 1003
- This is a one-semester introductory lecture course in general chemistry. It covers chemical equations, stoichiometry, thermodynamics, gases, atomic and molecular structure, periodic table, chemical bonding, states of matter, chemical equilibrium, organic, inorganic and polymeric materials and electrochemistry. It is a foundation course for most engineering and science majors.

Corequisite: EX-UY 1 - 1 Credits General Chemistry for Engineers Laboratory CM-UY 1001
- This is a one-semester introductory laboratory course in general chemistry. It covers chemical equations, stoichiometry, thermodynamics, gases, atomic and molecular structure, periodic table, chemical bonding, states of matter, chemical equilibrium, organic, inorganic and polymeric materials and electrochemistry. It is a foundation course for most engineering and science majors.

Co-requisites: CM-UY 1003

Or both of these:

- 3 Credits General Chemistry I CM-UY 1013
- First half of a two-semester general chemistry course, covering chemical equations, stoichiometry, thermochemistry, properties of gases, atomic structure, periodic table, chemical bonding and molecular structure. It is a required course for all Biomolecular Science (BMS) majors and for all pre-med students.

Corequisite: EX-UY 1. - 1 Credits General Chemistry Laboratory I CM-UY 1011
- First half of a two-semester general chemistry laboratory course, covering chemical equations, stoichiometry, thermochemistry, properties of gases, atomic structure, periodic table, chemical bonding and molecular structure. It is a required course for all Biomolecular Science (BMS) majors and for all pre-med students.

Corequisites: CM-UY 1013

And all of these:

- 2 Credits Physics: the Genesis of Technology PH-UY 1002
- This course introduces contemporary topics in physics, along with readings and discussions of topics with technological implications.

Prerequisite: Only first-year students are permitted to enroll in this introductory level course. - 4 Credits Calculus I for Engineers MA-UY 1024
- This course covers: Library of Functions, functions of one variable. Limits, derivatives of functions defined by graphs, tables and formulas, differentiation rules for power, polynomial, exponential and logarithmic functions, derivatives of trigonometric functions, the product and quotient rules, the chain rule, applications of the chain rule, maxima and minima, optimization. The definite integral, the Fundamental Theorem of Calculus and interpretations, theorems about definite integrals, anti-derivatives. MA-UY 1324 is for students who wish to take MA-UY 1024 but need more review of precalculus. MA-UY 1324 covers the same material as MA-UY 1024 but with more contact hours per week, incorporating a full discussion of the required precalculus topics.

Prerequisite: Placement Exam or MA-UY 912 or MA-UY 914 (with a grade of B or better). Corequisite: EX-UY 1 - 4 Credits Writing the Essay: EXPOS-UA 1
- This foundational writing course is required for CAS, Nursing, Social Work,

Steinhardt and Tandon incoming undergraduates. "Writing the Essay''

provides instruction and practice in critical reading, creative and logical

thinking, and clear, persuasive writing. Students learn to analyze and

interpret written texts, to use texts as evidence, to develop ideas, and to

write exploratory and argumentative essays. Exploration, inquiry,

reflection, analysis, revision, and collaborative learning are emphasized. - 1 Credits Engineering and Technology Forum EG-UY 1001
- In this course the notion of invention, innovation and entrepreneurship (i2e) is introduced to the students? educational experience. Students will be exposed to elements of a research-intensive institution and diverse research performed by leading engineers, scientists, inventors and entrepreneurs.

#### Spring Semester

- 3 Credits Mechanics PH-UY 1013
- This course is the first of a three-semester lecture sequence in general physics for science and engineering students. Motion of particles and systems of particles. One-dimensional motion. Vectors and two-dimensional motions. Forces and acceleration. Conservation of energy and momentum. Rotations. The free and driven harmonic oscillator. Gravitation. (This class meets four hours per week for lectures and recitation.)

Prerequisites: MA-UY 1024 or an approved equivalent. Corequisites: MA-UY 1124 or approved equivalent, and EX-UY 1 - 4 Credits Calculus II for Engineers MA-UY 1124
- This course covers techniques of integration, introduction to ordinary differential equations, improper integrals, numerical methods of integration, applications of integration, sequences, series, power series, approximations of functions via Taylor polynomials, Taylor series, functions of two variables, graphs of functions of two variables, contour diagrams, linear functions, functions of three variables. MA-UY 1424 is for students who wish to take MA-UY 1124 but need more review of precalculus. MA-UY 1424 covers the same material as MA-UY 1124 but with more contact hours per week, incorporating a full discussion of the required precalculus topics.

Prerequisites: MA-UY 1022 (with a grade of B or better) or MA-UY 1024 or MA-UY 1324 (with a grade of B or better).

Corequisite: EX-UY 1. - 4 Credits Introduction to Programming & Problem Solving CS-UY 1114
- This course introduces problem solving and computer programming and is for undergraduate Computer Science and Computer Engineering majors who have limited prior experience in programming in any language. The course covers fundamentals of computer programming and its underlying principles using the Python programming language. Concepts and methods introduced in the course are illustrated by examples from various disciplines. ABET competencies: a,b,c, e, f, g, k

Corequisite: EX-UY 1; Anti-requisite: CS-UY 1113 - 4 Credits The Advanced College Essay EXPOS-UA 2
- The course follows Writing the Essay (EW 1013) and provides advanced instruction in analyzing and interpreting written texts from a variety of academic disciplines, using written texts as evidence, developing ideas, and writing argumentative essays. It stresses analysis, argument, reflection, revision, and collaborative learning.

Prerequisite(s): EW 1013

Second Year

#### Fall Semester

- 3 Credits Electricity, Magnetism, & Fluids PH-UY 2023
- This is the second course of a three-semester lecture sequence in general physics for science and engineering students. Fluids at rest and in motion. An introduction to electric and magnetic forces and fields. Electric charge density. Electric fields from simple charge distributions. Electric potential. Capacitance. Magnetic forces. Magnetic field from a current loop. Inductance. Magnetism in matter. Current and resistance. (This class meets four hours per week for lectures and recitation.)

Prerequisites: PH-UY 1013 and MA-UY 1124 or an approved equivalent. Co-requisite: EX-UY 1 - 1 Credits General Physics Laboratory I PH-UY 2121
- PH-UY 2121 General Physics Laboratory I (0.5:1:0:1). An introductory level experimental course. Fundamental laboratory experiments in classical mechanics and electrostatics. Stresses basic experimental techniques, error analysis, and written presentation of experiment results. Experiments require progressively more detailed and sophisticated analysis. This laboratory class meets for three hours on alternate weeks.

Prerequisites: PH-UY 1013 and MA-UY 1124 or equivalent. Co-requisite: PH-UY 2023. - 4 Credits Calculus III: Multi-dimensional Calculus MA-UY 2114
- Vectors in the plane and space. Partial derivatives with applications, especially Lagrange multipliers. Double and triple integrals. Spherical and cylindrical coordinates. Surface and line integrals. Divergence, gradient, and curl. Theorems of Gauss and Stokes.

Prerequisite: MA-UY 1124 or MA-UY 1424 or MA-UY 1132. Anti-requisite: MA-UY 2514 - 4 Credits Data Analysis MA-UY 2224
- An introductory course to probability and statistics. It affords the student some acquaintance with both probability and statistics in a single term. Topics in Probability include mathematical treatment of chance; combinatorics; binomial, Poisson, and Gaussian distributions; the Central Limit Theorem and the normal approximation. Topics in Statistics include sampling distributions of sample mean and sample variance; normal, t-, and Chi-square distributions; confidence intervals; testing of hypotheses; least squares regression model. Applications to scientific, industrial, and financial data are integrated into the course.NOTE: Not open to students who have taken MA-UY 2233 or MA-UY 3012 or MA-UY 3022.

Prerequisite: MA-UY 1124, MA-UY1424, or MA-UY 1132 or MATH-UH 1020 or MATH-UH 1021 or MATH-SHU 151

HUSS Elective 1* | 4 Credits |

#### Spring Semester

- 3 Credits Waves, Optics, & Thermodynamics PH-UY 2033
- This is the third course of a three-semester lecture sequence in general physics for science and engineering students. Water, sound and electromagnetic waves. Reflection, scattering and absorption. Standing waves and spectra. Superposition, diffraction and beats. Geometrical optics. Introduction to thermodynamics; temperature, heat, and entropy. (This class meets four hours per week for lectures and recitation.)

Prerequisites: PH-UY 2121 and PH-UY 2023. Co-requisites: EX-UY 1. - 1 Credits General Physics Laboratory II PH-UY 2131
- PH 2131 General Physics Laboratory II (0.5:1:0:1). The second part of the introductory physics laboratory program. Fundamental laboratory experiments in E&M, waves, optics, and thermodynamics. Stresses experimental models and design, error and data analysis. This laboratory class meets for three hours on alternate weeks.

Prerequisites: PH-UY 2121 and PH-UY 2023. Corequisite: PH-UY 2033 - 4 Credits Introduction to Modern and Solid State Physics PH-UY 2344
- Special theory of relativity, Michelson Morley experiment. Planck's quantum hypothesis, photoelectric effect, Compton effect, Rutherford scattering, Bohr's atom, DeBroglie wavelength, electron diffraction, wave function, uncertainty principle, Schrodinger equation. Application to: square well potential, one electron atom. Atomic nucleus, fission and fusion. Energy bands in a periodic lattice, Kronig Penney model, valence, conduction bands, impurity states, electron mobility. Semiconductor properties. Introduction to superconductivity; electron pairs, energy gap, Josephson effect.

Prerequisites: PH-UY 2023; Co-requisite: PH-UY 2033 and MA-UY 2034. - 4 Credits Linear Algebra and Differential Equations MA-UY 2034
- MA-UY 2034 is an introduction to ordinary differential equations and linear algebra. The course develops the techniques for the analytic and numeric solutions of ordinary differential equations (and systems) that are widely used in modern engineering and science. Linear algebra is used as a tool for solving systems of linear equations as well as for understanding the structure of solutions to linear (systems) of differential equations. Topics covered include the fundamental concepts of linear algebra such as Gaussian elimination, matrix theory, linear transformations, vector spaces, subspaces, basis, eigenvectors, eigenvalues and the diagonalization of matrices, as well as the techniques for the analytic and numeric solutions of ordinary differential equations (and systems) that commonly appear in modern engineering and science.

Prerequisite: MA-UY 1124, MA-UY 1424 or MA-UY 1132. Note: Not open to students who have taken MA-UY 3044 or MA-UY 3054 or MA-UY 3083 or MA-UY 4204.

HUSS Elective 2* | 4 Credits |

** *To gain some breadth and depth of knowledge, take courses in at least two disciplines and at least one course at an advanced level.

Third Year

#### Fall Semester

- 4 Credits Analytical Mechanics PH-UY 2104
- The course covers statics by virtual work and potential energy methods. Stability of equilibrium. Particle dynamics, harmonic oscillator and planetary motion. Rigid body dynamics in two and three dimensions. Lagrangian mechanics. Dynamics of oscillating systems.

Prerequisite: PH-UY 2023; Co-requisite: MA-UY 2034

Physics Elective | 4 Credits |

Math Elective | 4 Credits |

HUSS Elective 3* | 4 Credits |

#### Spring Semester

- 2 Credits Junior Physics Laboratory PH-UY 3002
- An intermediate level laboratory course providing in depth exposure to a selection of classic physics experiments. Students' experimental skill set is expanded and data analysis and communication skills developed.

Prerequisites: PH-UY 2131 and PH-UY 2033; Co-requisites: PH-UY 2344 and MA-UY 2224. - 4 Credits Electricity and Magnetism PH-UY 3234
- The course covers properties of the electrostatic, magnetostatic and electromagnetic field in vacuum and in material media. Maxwell's equations with applications to elementary problems.

Prerequisites: PH-UY 2033 and MA-UY 2114.

Physics Elective | 3 Credits |

STEM Elective | 3 Credits |

HUSS Elective 4* | 4 Credits |

* To gain some breadth and depth of knowledge, take courses in at least two disciplines and at least one course at an advanced level.

Fourth Year

#### Fall Semester

- 3 Credits Quantum Mechanics I PH-GY 6673
- Quantum mechanics with applications to atomic systems. The use of Schrodinger's equations. Angular momentum and spin. Semi-classical theory of field-matter interaction.

Prerequisites: MA-UY 2114, PH-UY 3234 equivalents. - 2 Credits Introduction to Senior Project in Physics PH-UY 4902
- A qualified senior physics student or group of students work with a faculty member (and possibly graduate students) on an advanced problem in physics. In this introductory phase the student(s) and adviser select a suitable theoretical or experimental problem in the subject area and use various resources to solve it.
- 2 Credits Senior Seminar in Physics PH-UY 4912
- Senior physics students, in consultation with the instructor, study and prepare presentations on several current research topics in the general area of interdisciplinary physics. Students? performance is based on the mastery of the material chosen and also on the quality of the presentation made to the instructor and the seminar members.

Physics Elective | 3 Credits |

STEM Elective | 3 Credits |

Free Elective | 3 Credits |

- 1 Credits Guided Studies in Physics PH-UY 3801
- These guided studies courses in physics are supervised by staff member.

Prerequisites: Physics adviser approval. (Course may be repeated for additional credit.)

#### Spring Semester

- 4 Credits Thermodynamics and Statistical Physics PH-UY 4124
- The course covers fundamental laws of macroscopic thermodynamics, heat, internal energy and entropy. Topics include an introduction to statistical physics, and applications of Maxwell, Fermi-Dirac and Bose-Einstein distributions.

Prerequisites: PH-UY 2344, MA-UY 2114, and MA-UY 2224. - 4 Credits Senior Project in Physics PH-UY 4904
- In the project's concluding phase, senior physics students or group of students work with a faculty member (and possibly graduate students) to solve an advanced problem in interdisciplinary physics. The conclusion of the project is a written report and an oral presentation made to the supervising faculty.

Prerequisite: PH-UY 4902

Physics Elective | 3 Credits |

Physics Elective | 3 Credits |

Free Elective | 3 Credits |